Practice English Speaking&Listening with: Types of catalysts | Kinetics | AP Chemistry | Khan Academy

Difficulty: 0

- [Instructor] A catalyst speeds up a reaction

by lowering the activation energy.

And there are many types of catalysts.

And first we're going to look at enzymes

which are biological catalysts.

Let's say that this represents our enzyme,

and the place where the reaction occurs

is called the active site of the enzyme.

So right in here, let's say this is our active site.

And then the substance that reacts at the active site

is called the substrate.

So this little picture here with two triangles together,

that's the substrate for our reaction.

In the next step,

the substrate binds to the enzyme at the active site.

And when the substrate binds,

the substrate can produce changes in the shape

of the active site, that allow for better binding.

So on the left here, we can see how the shape

of the active site changes slightly

when the substrate binds to it.

This formation of the enzyme substrate complex

is called the induced fit model.

The substrate interacts with the enzyme

through non-covalent interactions in the active site.

So things like hydrogen bonding

or dipole-dipole interactions.

Perhaps some of these non-covalent interactions

cause a shift in electron density

which make it easier

to reach the transition state for the reaction.

Therefore lowering the activation energy

and speeding up the overall reaction.

Next let's say the bond between the two triangles breaks

and we get our two products here.

So two individual triangles.

And the enzyme active site goes back to the original shape

and it's ready to catalyze another reaction.

Next, let's talk about a homogeneous catalyst,

which is a catalyst that's present

in the same phase as the reactants in a reaction mixture.

So let's look at the hydrolysis of sucrose

to turn into glucose and fructose.

This reaction can be catalyzed

by the hydronium ion H30+.

And since sucrose, our reactant is an aqueous solution,

and so as the hydronium ion,

we can say that the hydronium ion is a homogeneous catalyst.

And it's a source of protons

to catalyze this hydrolysis reaction.

This is a drawing of the sucrose molecule,

which is a disaccharide composed of two monosaccharides.

Glucose is over here on the left

and fructose is over here on the right.

And these two monosaccharides are joined

by an ether linkage.

So we can see, we can see this,

this connection here, alright?

This oxygen in between our two monosaccharides

isn't ether linkage.

And ethers are fairly nonreactive.

Since ethers are generally unreactive,

the hydrolysis of sucrose is a pretty slow reaction.

And to speed it up, we need to add an acid catalyst.

So if we add an acid catalyst

and we have hydronium ions in aqueous solution,

a lone pair of electrons on the oxygen on the ether,

will take this proton

and these electrons move in to form water.

Protonation of the oxygen,

gives the oxygen a plus one formal charge.

And allows an acid catalyzed mechanism to proceed.

And there are more steps to the mechanism

but ultimately sucrose is broken down to form glucose

and fructose in this acid catalyzed hydrolysis of sucrose.

Honey bees actually have the enzyme to convert sucrose

which is table sugar, into glucose and fructose.

And since fructose is sweeter than sucrose,

honey is sweeter than table sugar.

A heterogeneous catalyst is a catalyst that's present

in a different phase

from the reactants in a reaction mixture.

As an example, let's look at a hydrogenation reaction.

And this reaction ethene reacts with hydrogen

on a surface of platinum to form ethane.

Now, since the platinum is in the solid form

and our reactants are in the gaseous state,

the platinum is an example of a heterogeneous catalyst.

So here in our picture, we have our piece of platinum metal

and both the ethene molecule and hydrogen are adsorbed

to the surface of the platinum metal.

Next the bond between the two hydrogen atoms breaks

and we get the two individual hydrogen atoms bonded

to the surface of the platinum metal.

Eventually these two hydrogens

add across the double bond of ethene

and form the ethane molecules C2H6.

So the hydrogenation of ethene to form ethane

is catalyzed by the presence of the platinum metal.

The Description of Types of catalysts | Kinetics | AP Chemistry | Khan Academy